Abstract. A new method of job evaluation, conducted by prioritizing activities is presented in this paper. The article contains the description of working the steps, the formulas used and their demonstration. The method is innovative and the implementation to achieve the reliability and quality results with the method based factor scores. Advantages and disadvantages conferred by the method of assessment tasks are highlighted by comparing the step of working steps of the proposed method and those based on scores.

Keywords: method, evaluation, jobs, work, tasks, results.

A NEW METHODOLOGY FOR JOB EVALUATION – ASSESSMENT BY TASKS

Dorin Leonard NISTOR
„Alexandru Ioan Cuza” University, Iași
11 Carol I Blv., Iași, Romania
Email: nistor_dorin_leonard@yahoo.com

Management & Marketing
1. Introduction

Assessing posts, defined by Doverspike et al. (1983) that a series of procedures by which the organization seeks to measure the value of a job in order to establish scientifically wage levels, has been integrated that process of human resources within companies, as a result of importance to human society has granted a fighting against discrimination. Document attitude of the company on discrimination, the companies have watched him improve his own images through actions so members, as concrete, in order to avoid discrimination (Petäjäniemi, 1996), evaluation processes for posts has among the measures implemented.

Watching fighting discrimination, assessments traditionally have avoided deliberately to take into account the amount people in valuation of the items. Although it is desirable that aspects related to assessing performance to be separated from the assessment work, employees impact on the value posts cannot and do not have eliminated. In fact, one of critique valuation systems traditional consists in considering that some people unnecessary complications in pure form world posts (Armstrong, 2003). How, in new organizations, roles evolve depending on skills employees they hold, we believe the new methodologies for evaluating the work to be so designed as to adapt to the new requirements. Adaptation is all the more necessary as the valuation posts by the impact on systems has a salary, exercise their influence over essential dimensions related management performance (Williams, 2002).

To ensure companies get the best results, an excellent system to motivate employees need to be implemented by the management team. Research shows that among the main factors motivating reward system is located. Among these studies, we find and conducted by GFK Romania for Capital Magazine, which shows the positioning of salaries to employees among the top five factors impacting on their satisfaction. The role that systems play in reward motivation and the objectives of a company are demonstrated by Verboncu and Manolescu, (2008), Rascal and Deaconu (2008), Kulno (2008) and the list goes on.

To say that a reward system is excellent, it must ensure rewarding employees deserve only when both deserve, and in a short time (Aubrey, 2007). This implies a close correlation between the analysis of labor, job evaluation, performance appraisal system, and providing rewards (Financials and nonfinancial). Work analysis plays to highlight what makes the employee and to determine indicators to measure performance. The job evaluation, salary shall ensure an interval value, the amount of financial rewards for the occupants of positions evaluated to oscillate, while the performance evaluation system aimed at achieving a differentiation based on performance recorded. Of course, the system will only work if the job evaluation standards and performance evaluation are clearly explained, understood and accepted by employees (Bhatti et al., 2011).

On a theoretical plane, things seem to work great. However, when we in empirical HR processes mentioned above do not seem to measure up to expectations. But to fulfill the purpose of this article, we focus attention on the main below existing
job evaluation systems that, we will briefly review the advantages and disadvantages of their move to the new method we propose respectively by the valuation task.

Job evaluation systems, both non-analytical (ranking, job classification method (the ranking), benchmarking site) and the analytical (factorial method, the remote points), are criticized by several authors, including and A. Corominas et al (2008), in several ways. First, the methods are considered to be designed at a time past, distant in time, if we refer to how quickly evolving job market. For this reason, evaluation systems, in our opinion, have not kept pace with new posts appeared, and no modifications to existing ones, new features causing the need for redesign of existing evaluation systems.

Each job evaluation method has some advantages and disadvantages. Non-analytical methods have the advantage in speed and ease of implementation and maintenance systems. The disadvantages are also significant. First, any non-analytical evaluation method can be used when the company he is sued for discrimination or non-payment in accordance with their work.

Other disadvantages can be identified separately for each method separately. Armstrong (2003), presents one of the disadvantages of the method of ranking the items, lack of standards for judging the relative values, and thus no opportunity to explain the rank order and increasing difficulty in implementing practice increases as the number of stations. The disadvantages mentioned, Emilian et al. (2003) adds unable to determine the degree of differentiation between stations.

For job classification method (the ranking), Armstrong (2003) states that inflexibility and disadvantages to shifts in job content, and there is a high risk that the descriptions of classes to become so widespread that, even employment positions and when they would consider only specifications for a single criterion, not be able to achieve enlightening.

Among the disadvantages of the method of benchmarking, Armstrong and Murlis (2007) lists the risk of perpetuating the existing inequalities, as well as subjective assessments that are often difficult to justify.

Analytical job evaluation methods fail to reduce the subjectivity of non-analytical methods specific assessments but, the price significantly higher consumption of resources.

Regarding the comparison method factors, Heneman (2003) method assigns two advantages, namely depth evaluation and easy determination of rank. The advantages mentioned, Chang and Kleiner (2002) adds semantic elimination problems. Among the disadvantages mentioned unable to explain the results in the absence of definitions for each level of the factors used, and that the method assumes that the only factors are important in determining wages retained, which is a false situation.

Score-based method has the great advantage of been accepted by the courts in trials in which the organization is accused of discrimination. A detail of the method and its advantages and disadvantages in this article is done in a separate section, which performs a comparison of it with the method proposed by the job evaluation task.
Management & Marketing

We find that the impact of the job evaluation process can play in motivating employees and thus indirectly on the results of the company is large, but a need to eliminate or at least reduce the disadvantages of existing methods. The new job evaluation methodology that we present below is intended to fulfill this goal.

Later positioning job evaluation process in the literature, and after reviewing the main advantages that the main disadvantages associated assessment methods, making a picture of the job evaluation methodology by tasks we consider in this article as necessary (Figure 1). To make the assessment, an analysis of the initial work must take place.

Figure 1. The main stages of the evaluation methodology of tasks
A new methodology for job evaluation – assessment by tasks

The first step consists in preparing an organization process. We define organizational process as all activities performed within the analyzed structure present in a form which shows the sequence and connection between them.

Because correlations between activities, shall ensure to obtain all information related to the tasks performed. The data collection activity stops just in time of all correlations. Organizational process provides a clear, visual elements like graphs, which facilitate their view process and the decision on the reorganization process.

Later stage of preparation of the organizational process, are identified for each activity that characterizes all aspects, namely: supervision, freedom of decision, expected results, the implications of failure or poor performance of the work, required knowledge, networking, skills and competencies required, the equipment, machinery, money, decisions and results, the nature and difficulty in performing activities bugs, working conditions and risks is subject to the person undertaking the activity, experience.

Completion of work allows launching job evaluation process. For each occupation, are marked only real criteria that ensure the distinction between the activities carried out. A hierarchy is an alternative to the comparison between tasks without using criteria. The method is similar to that of the comparison (Nica, 2010), the difference being in its application to the tasks, not jobs.

For each criterion, are ranked the same area all the specific activities (human resources, financial accounting, manufacturing, and so on). It answers the question: activity X is more important than the load Y, the only criterion in terms of Z? Subsequently, they are established importance of each criterion coefficients. Allocation method different weights for each occupation separately. To understand why this approach may be used as an example: accountants will provide the relative importance between the necessary knowledge and working conditions, clearly different from the relative importance that chemists would give it between the two criteria, assuming that they would work in a toxic environment. Finally, the hierarchy of tasks is achieved, given the importance and assessments for each criterion. Requirements set out in this passage does not apply to alternatives by which the hierarchy is achieved by a comparison of the activity without using criteria.

After obtaining this information, you can proceed to determine the average pay for a person occupying a certain position. At this stage, the relative values obtained in the evaluation process were transformed into wage data, applying a method using 75 and 25 provided percentile salary studies, and includes the following steps:

1) Identify the largest and the lowest salary for percentile 75 and 25, analyzed domain (financial accounting, human resources, production, etc.) Specific activity and geographical area of origin of the company.
2) Award to the most valuable and least valuable to the task of salaries for percentile 75 and 25.
3) Calculation of relative values for each task.
4) Determination of job values, according to data obtained in the previous step, and the share of activities.

For methods that do not appeal to labor market information, a further step was necessary, that the most valuable and least valuable activities for each field found in the assessment, are ranked among themselves. Subsequently, other tasks are resized, according to new values for the most valuable and the least valuable tasks. After this stage, we can proceed to calculate wages. Method is to use a maximum level and a minimum wage for the most valuable, that the least valuable post. The salaries of other positions are calculated proportionally according to their score and the previously established limits.

2. Hierarchy of activities in each area

Later work performance analysis process and after selecting the evaluation criteria, can proceed to stage hierarchy of activities in each field (e.g human resources, financial accounting, etc.).

Before proceeding to the actual presentation of two explanations methodology needed to be made.

The first observation concerns the assessment scale. For each criterion, the hierarchy of tasks takes place on a scale with values in the range \([1, 1,000,000] \). Activities can take any integer located within, except the most valuable and less valuable tasks.

Most valuable tasks will always receive a value and the least valuable work will be assigned one million.

Selecting a value scale of such magnitude is due to the potential development of the proposed system, especially if a large number of activities hierarchy.

Suppose we have selected a much smaller scale in the range \([1, 100] \) and to analyze a comparative evaluation (Table 1).

Firstly it can be seen cropping, with significant impact on the final values of activities. Amplitude between the two activities 2856 nominal growth, which means a variation to the original distance of \(\frac{2,856}{(978,567 - 971,423)} \times 100 = 39.97\% \).

Secondly when there is a significantly greater number of activities required to be ranked (ego 150), the time could not provide the opportunity to differentiate their value.

Table 1

<table>
<thead>
<tr>
<th>Activity</th>
<th>([1, 1,000,000])</th>
<th>([1, 100])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport raw materials, primary packaging, secondary tubes, auxiliary materials, finished products</td>
<td>971,423</td>
<td>97</td>
</tr>
<tr>
<td>Primary packaging ointments in tubes</td>
<td>978,567</td>
<td>98</td>
</tr>
</tbody>
</table>
Using two digits after the decimal point may solve the problem but does not provide differentiation necessary finesse. For example if a table would like to insert other activities deemed to have a value very close to that of packaging (user specified distance is 99), the new work would receive the value of 971,423 + (978,567-971,423) × 99 / 100 = 978,495, which by using the interval [1, 100] to two decimal places would be 97.85. It is noted that the result is very close to value as much as 97.86 would be rounded business value “primary packaging ointments in tubes”. Therefore, we conclude that the use of interval [1, 100] to two decimal places to distinguish fine raises the value of tasks when a large number of activities are prioritized. Selecting a scale with values in the range [1.0000, 100.0000] to four decimal places, therefore the same as opting for the interval [1, 1,000,000].

Figure 2. Stages in the hierarchy of activities
The second statement refers to the way in which the hierarchy of tasks. If not already prioritized activities, the computer automatically assigns a valuable first task identified (as the most valuable).

The next task was compared with the power already hierarchical and based on the evaluator's view, the computer automatically assigns the value 1 and 1,000,000, the most valuable that the least valuable activities.

For other tasks hierarchy will go through the steps shown in Figure 2. In stage hierarchy of activity (Figure 2), the evaluator is required to provide a value between 1 and 99, with the following specifications:

- Provide a value closer to 1 or even a hierarchy means that the activity tends or is very close to the upper limit value (most valuable task interval).
- Provide value of 50 means that the business value hierarchy is equidistant from the margins.
- Provide a value closer to 99 or even 99 means that the activity hierarchy tends or is very close in value to the lower limit of the range (the least valuable task).

The value given is the distance from other activities with which to compare.

Please note that the hierarchy at this stage occurs only between activities on the same field. This means for example that any financial activity book will compare only with other accounting and financial tasks any human resources work, production, marketing will compare only the tasks belonging to human resources, manufacturing, marketing, respectively.

Stage hierarchy of activities raise some problems which are solved according to the specific situation in which we find as follows:

1) Hierarchical activity is to be considered by the assessor as the most valuable of all tasks assessed up to that point in the field to which it belongs, on the criteria selected (Figure 3).

Subject task hierarchy (D) receives the value 1 and determine the new value of the activity (A), which previously form task D was considered the most valuable. To this end the assessor is required to provide a value between 1 and 99, with the following specifications:

- Provide a value closer to 1 or even a hierarchy means that activity (A) tends or is very close to that amount of work D.
- Provide value of 50 means that the hierarchical activity (A) is an equal distance value D activity, namely C.
- Provide a value closer to 99 or 99 means that the activity hierarchy tends or is very close to C.

The amount of work given the distance from other activities with which to compare (D, C respectively).
A new methodology for job evaluation – assessment by tasks

Figure 3. Inserting activity considered to be the most valuable

A_{t1} – activities considered to be the most valuable (at time t1 - before the new task hierarchy);
B_{t1} – some activity with an intermediate position (at time t1);
C_{t1} – activities considered to be the least valuable (at t1);
A_{t2} – new position, then the hierarchy (t2) when t1 of the activity was regarded as the most valuable;
B_{t2} – the new position of some intermediate activities (at t2);
C_{t2} – position considered to be the work of less valuable (at t2);
D_{t2} – new activity considered to be the most valuable by hierarchy;
d_1 – the value of business B at time t1;
d_2 – d_2 - business value C at the time t1;
d_3 – A business value at the time t2;
d_4 – the value of business B at time t2 - A business value at the time t2;
d_5 – business value C at the time t2 - A business value at the time t2.

Business value that previously was the most valuable becomes:

\[A_{t2} = \frac{C_{t2}}{100} \times \text{distance}, \]

where:

- distance – is the value given by the assessor.

Values intermediate activities (such as B) are amended, respecting the condition of proportionality between the distance keeping, in which tasks are most valuable task compared with the least valuable, at times t1 and t2. The condition of proportionality being:

\[\frac{d_1}{d_2} = \frac{d_4}{d_5}. \]
The intermediate value of any asset is determined using the following formula, as proven formula:

\[B_{t_2} = B_{t_1} \times \frac{C_{t_2} - A_{t_2}}{C_{t_1}} + A_{t_2} \]

As proven formula:

\[d_1 = \frac{d_2}{d_4}, \text{ in which replace the } d_1 \text{ with } B_{t_1}, d_2 \text{ with } C_{t_1}, d_4 \text{ with } (B_{t_2} - A_{t_2}) \text{, } d_5 \text{ with } (C_{t_2} - A_{t_2}) \text{, equality becomes:} \]

\[B_{t_2} \times \frac{C_{t_2} - A_{t_2}}{C_{t_1}} = B_{t_1} \times (C_{t_2} - A_{t_2}) \Rightarrow B_{t_2} = \frac{B_{t_1} \times (C_{t_2} - A_{t_2})}{C_{t_1}} + A_{t_2} \]

Tasks is the least valuable retains its value before the hierarchy (one million). Example – it has the following data:

\[C_{t_1} = C_{t_2} = 1,000,000, \text{ stable and justified in this work.} \]

\[B_{t_1} = 400,000 \]

\[\text{distance} = 15 \text{ (assuming that the assessor distance value assigned to variable 15)} \]

Calculate the activity A at the time t2, replacing the formula:

\[A_{t_2} = \frac{C_{t_2}}{100} \times \text{distance} = \frac{1,000,000}{100} \times 15 = 150,000 \]

Determine the value of B activity at the time t2, replacing the formula:

\[B_{t_2} = B_{t_1} \times \frac{C_{t_2} - A_{t_2}}{C_{t_1}} + A_{t_2} = 400,000 \times \frac{1,000,000 - 150,000}{1,000,000} + 150,000 = 490,000 \]

2) Activity to be considered by the assessor hierarchy as the least valuable of all tasks assessed up to that point in the field to which it belongs, on the criterion selected (Figure 4).

Most valuable tasks retains its value before the hierarchy (1) and hierarchical activity (D) receives the value of 1,000,000.

Values intermediate activities and tasks of the former considered to be the least valuable at the time t1 are:

\[B_{t_2} = \frac{B_{t_1}}{100} \times \text{distance and } C_{t_2} = \frac{C_{t_1}}{100} \times \text{distance}, \]

where:

\[\text{distance} \text{ – is the value given by the assessor and is contained in the interval } [1, 99], \text{ where 1 indicates that the value of C tends to A, and 99 that task C is very close in value so the task D (new hierarchical).} \]

Example – it has the following data:

\[B_{t_1} = 400,000 \]

\[\text{distance} = 80 \text{ (assume that the assessor distance value assigned to variable 80)} \]

Determines the activity of B at time t2, replacing the formula:
A new methodology for job evaluation – assessment by tasks

\[B_{t2} = \frac{B_{t1}}{100} \times \text{distance} = \frac{400,000}{100} \times 80 = 320,000. \]

Figure 4. Inserting activity considered to be the least valuable

At1 – activities considered to be the most valuable (at time t1 - before the new task hierarchy);
Bt1 – some activity with an intermediate position;
Ct1 – activities considered to be the least valuable (at time t1 before the new hierarchy of tasks);
At2 – position activity considered to be the most valuable after ranking (t2);
Bt2 – new position of some intermediate activities;
Ct2 – new position hierarchy later (t2) of the activity was considered to be the least valuable hierarchy before (t1);
Dt2 – new activity considered to be the least valuable by hierarchy;
d1 – B activity at the time t1 value;
d2 – B activity value at the time t2.

3) Tasks is considered by hierarchical topic as the criterion selected intermediate value (Figure 5).
All activities already ranked retain their positions.
New business value hierarchy is determined as follows:

\[D_{t2} = A_{t2} + \frac{C_{t2} - A_{t2}}{100} \times \text{distance}, \]

where:

distance – is the variable that stores the value given by the assessor and is contained in the interval \([1, 99]\), where 1 indicates that the activity tends \(D\) hierarchical value to \(A\), and 99 that task \(D\) is very close to the end value of task \(C\).
Figure 5. **Inserting an activity considered to be intermediate**

\[A_{t1} \rightarrow A_{t2} \]

\[C_{t1} \leftarrow C_{t2} \]

\[D_{t2} \]

A\(_{t1}\) – activities considered to be the most valuable or any activity with an intermediate position (at time \(t1\) - Previous ranking);

C\(_{t1}\) – activity can be considered to be the least valuable or any activity with an intermediate position (at time \(t1\));

A\(_{t2}\) – can be considered to be the position of activity or task any more valuable to an intermediate position (at time \(t2\) – after ranking) but a higher value than hierarchical activity \(D\);

C\(_{t2}\) – activity can be considered to be the least valuable or any activity with an intermediate position but a lower value than hierarchical task \(D\) (at \(t2\));

D\(_{t2}\) – hierarchical activity on an intermediate position.

Example – it has the following data:

\(A_{t2} = 200.000; C_{t2} = 300.000; \text{distance} = 30\)

Determine the value of \(D\) activity at the time \(t2\), replacing the formula:

\[D_{t2} = A_{t2} + \frac{C_{t2} - A_{t2}}{100} \times \text{distance} = 200.000 + \frac{300.000 - 200.000}{100} \times 30 = 230.000 \]

If the assessor changes his mind about the value of a given task, it may resort to deleting tasks from the list of prioritized activities and evaluation activity resumption removed.

The following steps describe how to recalculate the relative values for the remaining activities, following the deletion of tasks depending on the specifics of each situation encountered.

4) Activity on the assessor wishes to eliminate is the most valuable at the time \(t1\) (previous deletion) in the field to which it belongs, on the criteria selected (Figure 6).
A new methodology for job evaluation – assessment by tasks

Figure 6. Eliminating the most valuable asset

At1 – activity at the time t1 (before deletion) was regarded as the second value;
Bt1 - some activity with an intermediate position at time t1;
Ct1 – activities considered to be the least valuable at the time t1;
A_{t2} – A position that activity at the time t2 (after deleting D activity) is the most valuable;
B_{t2} – new position of some intermediate activities at the time t2;
C_{t2} – position activity considered to be the least valuable, at time t2;
D_{t1} – activities considered before completion of the deletion, as the most valuable;
d1 – B activity at the time t1 value - the value of activity A at the time t1;
d2 – C activity value at the time t1 value - the value of activity A at the time t1;
d3 – B activity value at the time t2;
d4 – C activity value at the time t2.

The values of other activities (remaining after deletion) than tasks A and C is amended in compliance with the requirement to retain the proportionality between the distance at which they are found compared with A and C. The condition of proportionality being: $\frac{d_1}{d_2} = \frac{d_3}{d_4}$.

Activity A (the second value at time t1) receives the value 1.
Intermediate values are determined based activities following formula:

$B_{t2} = \frac{B_{t1} \cdot A_{t1}}{C_{t1} - A_{t1}} \times C_{t2}$, formula shown as follows:
\[\frac{d_1}{d_2} = \frac{d_3}{d_4}, \text{ they replace } d_1 \text{ with } (B_{t1} - A_{t1}), d_2 \text{ with } (C_{t1} - A_{t1}), d_3 \text{ with } B_{t2}, \text{ } d_4 \text{ with } C_{t2}, \text{ becoming equal:} \]
\[\frac{B_{t1} - A_{t1}}{C_{t1} - A_{t1}} = B_{t2} \Rightarrow B_{t2} = \frac{B_{t1} - A_{t1}}{C_{t1} - A_{t1}} \times C_{t2} \]

The least valuable task retains its value before the hierarchy (one million).

Example - it has the following data:

- \(B_{t1} = 400,000 \), \(A_{t1} = 100,000 \), \(C_{t1} = C_{t2} = 1,000,000 \)

Determine the value of \(B \) at time \(t_2 \) task, replacing the formula:

\[B_{t2} = \frac{B_{t1} - A_{t1}}{C_{t1} - A_{t1}} \times C_{t2} = \frac{400,000 - 100,000}{1,000,000 - 100,000} \times 1,000,000 = 333,333 \]

5) Activity on the assessor wants to eliminate the least valuable is the time \(t_1 \) (before deletion) in the field to which it belongs, on the criteria selected (*fig. 7*).

![Figure 7: Eliminate the least valuable asset](image)

* Figure 7. Eliminate the least valuable asset

- \(A_{t1} \) – activities considered to be the most valuable at the time \(t_1 \);
- \(B_{t1} \) – some activity with an intermediate position, at time \(t_1 \);
- \(C_{t1} \) – activities considered to be the penultimate value at the time \(t_1 \);
- \(A_{t2} \) – a weak position at the time \(t_2 \);
- \(B_{t2} \) – new position of some intermediate activities at the time \(t_2 \);
- \(C_{t2} \) – new position after ranking the activity that takes minimum time \(t_2 \);
- \(D_{t1} \) – activities considered before completion of deletion, as the least valuable;
- \(d_1 \) – \(B \) activity at the time \(t_1 \) value;
- \(d_2 \) – \(C \) activity at the time \(t_1 \) value;
- \(d_3 \) – \(B \) activity value at the time \(t_2 \);
- \(d_4 \) – \(C \) activity value at the time \(t_2 \).
The values of other activities (remaining after deletion) than tasks A and C is amended in compliance with the requirement to retain the proportionality between the distance at which they are found compared with A and C. The condition of proportionality being:

\[
\frac{d_1}{d_2} = \frac{d_3}{d_4}.
\]

Activity A retains the value 1.

The value of intermediate activities is determined using the following formula:

\[
B_{t2} = \frac{B_{t1}}{C_{t1}} \times C_{t2}, \quad \text{formula shown as follows:}
\]

\[
\frac{d_1}{d_2} = \frac{d_3}{d_4}, \quad \text{they replace the } d_1 \text{ with } B_{t1}, \ d_2 \text{ with } C_{t1}, \ d_3 \text{ with } B_{t2}, \ d_4 \text{ with } C_{t2},
\]

equality becomes:

\[
\frac{B_{t1}}{C_{t1}} = \frac{B_{t2}}{C_{t2}} \Rightarrow B_{t2} = \frac{B_{t1}}{C_{t1}} \times C_{t2}
\]

The task considered at the time t1 as the penultimate value was assigned at the time t2, the value of 1,000,000.

Example - it has the following data:

\[
B_{t1} = 500,000; \ C_{t1} = 900,000; \ C_{t2} = 1,000,000
\]

Determine the value of business B at time t2, replacing the formula:

\[
B_{t2} = \frac{B_{t1}}{C_{t1}} \times C_{t2} = \frac{500,000}{900,000} \times 1,000,000 = 555,555
\]

5. Activity on the assessor is unwilling to eliminate intermediate value at the time t1 (before deletion) on selected criteria (Figure 8).

\[
A_{t1} \quad 0 \quad A_{t2}
\]

\[
D_{t1} \quad 0
\]

\[
C_{t1} \quad 0 \quad C_{t2}
\]

Figure 8. **Remove an intermediate activities**

- A_{t1} – activities considered to be the most valuable or as having an intermediate position but a higher value than the load D at time t1 (before deletion);
- C_{t1} – activities considered to be the last in value or an intermediate position but with a lower value than the load at the time t1 D;
- A_{t2} – a weak position at the time t2;
C_{t2} – position at time t2 C activity;
D_{t1} – activity prior to making deletion intermediate value (at time t1).

As a result of deletion D activity, all other tasks already ranked retain their positions.

3. Calculation of relative values when the final assessment activities using evaluation criteria

If the evaluation criteria used for evaluation, determination of the relative powers of the final takes place after completion of all activities belonging to a domain hierarchy on each criterion, through the following steps:

In the first place are set weights for each criterion used in ranking. Consider necessary to set the weights at this stage, because policy makers may have a clearer picture of how work and can be used in the decision-making hierarchy of information resulting from activities on each criterion.

In determining the weight factors makers are asked to respect the following limits - none of the factors that weight does not exceed 1.5 times the average share, nor have a share below 50% x average weight. Specifically, when using the five factors with an average of 20%, the range would be [10%, 30%]. It can be seen that the range provides a sufficient margin, allowing the impact of the most important factor to be 3 times the factor considered as the least important, while avoiding excessive granting of shares, or too small. Factors makers can choose, either argued for the elimination of one or more criteria if they are not relevant to the assessed, or if there is a very strong degree of correlation between results obtained on the criteria used.

The value of an activity is determined based on a weighted average of values obtained by each criterion task according to the formula:

\[V_{fai} = \sum (V_{aij} \times P_j) \]

where:

- \(V_{fai} \) – the final value of activity in;
- \(V_{aij} \) and business value for the criterion j;
- \(P_j \) – weight given to criterion j;

Remarks:
1. This step does not apply hierarchy do not use evaluation criteria.
2. The method provides the ability to select and weight the criteria differently in each area. This approach is in our opinion an advantage of the proposed method because it made such a better match criteria and their importance to the specific domain of activities evaluated.

Example - it has the following data:

For the production, we have the following shares allocated to the criteria (Table 2):
Assigning weights to criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Values obtained from an activity based on some</th>
<th>Shares allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge and skills (practical knowledge structured in stages)</td>
<td>50,000</td>
<td>20%</td>
</tr>
<tr>
<td>Skills (innate abilities)</td>
<td>125,000</td>
<td>20%</td>
</tr>
<tr>
<td>The difficulty of solving problems</td>
<td>250,000</td>
<td>25%</td>
</tr>
<tr>
<td>Responsibility - The consequences of poor implementation activity</td>
<td>1</td>
<td>25%</td>
</tr>
<tr>
<td>Exercise, working conditions and risks</td>
<td>680,800</td>
<td>10%</td>
</tr>
</tbody>
</table>

Determine the value of work and of replacing the formula:

\[V_{jai} = \sum (V_{aj} \times P_j) = 50,000 \times 0.2 + 125,000 \times 0.2 + 250,000 \times 0.25 + 1 \times 0.25 + \\
+ 680,800 \times 0.1 = 10,000 + 25,000 + 62,500 + 0.25 + 68,080 = 165,580.25 \]

4. Ensuring comparison between values belonging to different areas and activities determine salary levels

Later hierarchy of tasks for each area is necessary to ensure comparability between values belonging to various fields of activities. For this purpose you can use several techniques depending on the situations encountered in implementing the system:

1) A job evaluation using minimum and maximum salary limits can be used especially if you could be formed groups of experts coming from all areas of work or recourse to an assessment carried out individually by an equal number of specialists belonging to each area assessed. The methodology involves the following.

The condition of uniqueness is taken in compliance with the criteria evaluation used in assessing the areas of activities. For example, if the field of Human Resources was the criteria used knowledge and responsibility, and for knowledge production and working conditions, then the final assessment will use knowledge, responsibility and working conditions. The importance of each criterion will be determined by the working group.

In each area two activities are marked. The principle aim of selecting the most valuable and the least valuable tasks, the technique does not impose this condition. The next stage involves a hierarchy of activities selected for each criterion, going through a sequence of steps identical to prioritize work tasks for each area.
Following the hierarchy selected activities can be found as outlined in Figure 9.

Figure 9. Situations encountered in ensuring the comparability of activities pertaining to different areas

A_{t1} – activity which in principle is the most valuable of the related field of belonging;
B_{t1} – any activity which is in an intermediate position at the time $t1$ (the end of the hierarchy within the scope of activities coming);
C_{t1} – activity which in principle is the least valuable of those selected from the domain they belong;
A_{t2} – the following ranking position interdepartmental activities of the selected task;
B_{t2} – new position of some activities at the time $t2$ (due to the evolution of values A and C activity after their inter-hierarchy);
C\textsubscript{12} – C activity following ranking position interdepartmental task selected;
d\textsubscript{1} – B activity at the time t\textsubscript{1} value - the value of activity A at the time t\textsubscript{1};
d\textsubscript{2} – C activity at the time t\textsubscript{1} value - the value of business B at time t\textsubscript{1};
d\textsubscript{3} – value B at time t\textsubscript{2} business - A business value at the time t\textsubscript{2};
d\textsubscript{4} – C activity at the time t\textsubscript{2} value - the value of business B at time t\textsubscript{2}.

Situations exemplified by Figure 9:
Figure 9.aa – A business value while maintaining load value C decreases. Values a decrease of other tasks.
Figure 9.ab – values of all tasks remain.
Figure 9.ac – A business value while maintaining load value C increases. The values of other tasks are growing.
Figure 9.ba – Increase business value while the load value C decreases. Other duties recorded values increase, decrease or maintenance according to baseline value and amplitude variations of selected activities (A and C).
Figure 9.bb – Increase business value while the load value C is maintained. Other duties recorded values increase.
Figure 9.bc – values increase for all activities.
Figure 9.ca – lower values of all activities.
Figure 9.cb – A business value decreases while the load value C is maintained. The values of the other tasks are down.
Figure 9.cc – A business value decreases while the load value C increases. Other duties recorded values increase, decrease or maintenance according to baseline value and amplitude variations of selected activities (A and C).

The values of other activities are determined using the following formula:

\[B_{12} = \frac{C_{12} \times (B_{11} - A_{11}) + A_{12} \times (C_{11} - B_{11})}{C_{11} - A_{11}}, \]

formula shown as follows:

\[d_1 = \frac{d_1}{d_2}, \]
they replace \(d_1 \) with \((B_{11} - A_{11}) \), \(d_2 \) with \((C_{11} - B_{11}) \), \(d_3 \) with \((B_{12} - A_{12}) \), \(d_4 \) with \((C_{12} - B_{12}) \).

Equality becomes:

\[\Rightarrow C_{12} \times (B_{11} - A_{11}) + B_{12} \times (B_{11} - A_{11}) = B_{12} \times (C_{11} - B_{11}) + A_{12} \times (C_{11} - B_{11}) \]

\[\Rightarrow B_{12} \times (C_{11} - B_{11}) + B_{12} \times (B_{11} - A_{12}) = C_{12} \times (B_{11} - A_{11}) + A_{12} \times (C_{11} - B_{11}) \]

\[\Rightarrow B_{12} = \frac{C_{12} \times (B_{11} - A_{11}) + A_{12} \times (C_{11} - B_{11})}{C_{11} - A_{11}} \]
Example – it has the following data (suggested values) to meet the situation presented in Figure 9.ba:

\[A_{t1} = 130,000; \quad B_{t1} = 500,000; \quad C_{t1} = 950,000; \]
\[A_{t2} = 40,000; \quad B_{t2} = ?; \quad C_{t2} = 980,000; \]

\(B_{t2} \) determine value, replacing the formula:

\[
B_{t2} = \frac{C_{t2} \times (B_{t1} - A_{t1}) + A_{t2} \times (C_{t1} - B_{t1})}{C_{t1} - A_{t1}} = \frac{980,000 \times (500,000 - 130,000) + 40,000 \times (950,000 - 500,000)}{950,000 - 130,000}
\]

\[
= \frac{980,000 \times 370,000 + 40,000 \times 450,000}{820,000} = \frac{362,600,000,000 + 18,000,000,000}{82,000} = 464,146
\]

There are a number of cases, situations may occur when activities selected are not the most valuable or less valuable.

The particularity of these situations is the negative values of over 1,000,000 that activities which are not found value in the interval \([A_{t1}, C_{t1}]\) can take powers from the inter-hierarchy selected (A and C) and recalculation of the values of all other tasks.

Example 1 – The following data is available (suggested values) to meet the situation shown in Figure 10.a:

\[A_{t1} = 50,000; \quad B_{t1} = 10,000; \quad C_{t1} = 980,000; \]
\[A_{t2} = 1; \quad B_{t2} = ?; \quad C_{t2} = 900,000. \]

\(B_{t2} \) determine value, replacing the formula:

\[
B_{t2} = \frac{C_{t2} \times (B_{t1} - A_{t1}) + A_{t2} \times (C_{t1} - B_{t1})}{C_{t1} - A_{t1}} = \frac{900,000 \times (10,000 - 50,000) + 1 \times (980,000 - 10,000)}{980,000 - 50,000}
\]

\[
= \frac{900,000 \times (-40,000) + 970,000}{930,000} = \frac{-35,999,030,000}{930,000} = -38,709
\]

Example 2 – has the following data (suggested values) to meet the situation presented in Figure 10.b:

\[A_{t1} = 15,000; \quad B_{t1} = 970,000; \quad C_{t1} = 900,000; \]
\[A_{t2} = 210,000; \quad B_{t2} = ?; \quad C_{t2} = 1,000,000. \]

\(B_{t2} \) determine value, replacing the formula:

\[
B_{t2} = \frac{C_{t2} \times (B_{t1} - A_{t1}) + A_{t2} \times (C_{t1} - B_{t1})}{C_{t1} - A_{t1}} = \frac{1,000,000 \times (970,000 - 15,000) + 210,000 \times (900,000 - 970,000)}{900,000 - 15,000}
\]

\[
= \frac{1,000,000 \times 955,000 + 210,000 \times (-70,000)}{885,000} = \frac{955,000,000,000 - 14,700,000,000}{885,000} = 1,062,486
\]
As can be seen in the examples given, activity B can take negative or greater than 1 million given that at time t1, its value is not in the interval \([A_{t1}, C_{t1}]\) as ranking tasks within the scope of which belongs. Taking values outside the range that initially \([1, 1,000,000]\), does not affect subsequent ranking since the purpose of this phase is to establish order and relative distance between activities. Nominal values are not important as long as the reported value to store (no matter if the value is 500,000 or 100,000 task A and task B is a 50,000 or 10,000, as long as what we are concerned that the ratio between the activities A and B being equal – \(500,000/50,000 = 100,000/10,000\)).

Problems encountered:

a) Disagreement between the working group members can lead to failure assessment;

b) An individual assessment may be strongly influenced by self-serving their own interests and the assumption that if everyone overvalues then the media will be represented, is deeply flawed because of differences in morality for participants resulting in a degree the phenomenon of self-Serving significantly different from individual to individual.

Subsequently the final calculation of the relative values of each activity can proceed to determine the relative values for each post. For this purpose a weight assigned to each activity is as percent of the working time is spent meeting that reviewed the job duties.

The relative value of an item is determined based on a weighted average of values obtained by each activity according to the formula:

\[V_{fx} = \sum (V_{a} \times P_i), \]

where:

- \(V_{fx}\) – final value of the station x;
- \(V_{ai}\) – relative value of activity in;
- \(P_i\) – weight given to business and in total working time of job x.
Example: it has the following data in Table 3:

Table 3

<table>
<thead>
<tr>
<th>Activities</th>
<th>Relative values of activities</th>
<th>Shares allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration notes accounting for accountants: depreciation, compensation, tax, environmental fund, dividend</td>
<td>447,734</td>
<td>20%</td>
</tr>
<tr>
<td>Monthly verification: closing costs, closing the income, VAT, discharge, trial balance</td>
<td>82,952</td>
<td>20%</td>
</tr>
<tr>
<td>Completing records: journal (includes debit and credit amounts, cash register, accounting notes), input-output tax records, electronic records of employees, inventory (including assets and liabilities from the balance sheet)</td>
<td>447,734</td>
<td>20%</td>
</tr>
<tr>
<td>Preparation of balance sheet (document)</td>
<td>92,408</td>
<td>30%</td>
</tr>
<tr>
<td>Prepare annual tax declaration (document)</td>
<td>596,015</td>
<td>10%</td>
</tr>
</tbody>
</table>

Determine the relative position of x, replacing the formula:

$$V_f = \sum_{i} (V_{ai} \times P_f) = 447,734 \times 0.2 + 82,952 \times 0.2 + 447,734 \times 0.2 + 92,408 \times 0.3 + 596,015 \times 0.1 = 89,546.8 + 16,590.4 + 89,546.8 + 27,722.4 + 59,601.5 = 283,007.9$$

Based on the relative values obtained for each item are indicative payroll. It determines the salaries of all other jobs according to a minimum and maximum salary level established by management factors (Figure 11).

Based on the relative values obtained for each item are indicative payroll. It determines the salaries of all other jobs according to a minimum and maximum salary level established by management factors (Figure 11).

Figure 11. Determination by a minimum wage and maximum

- P_{min} – score the most valuable post;
- P_x – score by a post some x;
- P_{max} – scores obtained by the least valuable position;
A new methodology for job evaluation – assessment by tasks

S_{\text{max}} \text{ – maximum salary level established by policy makers;}
S_{x} \text{ – pay what you want to calculate for a position } x;
S_{\text{min}} \text{ – minimum wage level by policy makers (it must be greater than or equal to the minimum wage).}

The value of a post some } x \text{ is determined based on the following formula:}

\[S_{x} = S_{\text{max}} + \frac{(P_{x} - P_{\text{min}}) \times (S_{\text{min}} - S_{\text{max}})}{(P_{\text{max}} - P_{\text{min}})} \text{, formula shown as follows:} \]

\[\frac{d_{1}}{d_{2}} = \frac{d_{3}}{d_{4}} \text{, they replace } d_{1} \text{ with } (P_{x} - P_{\text{min}}) \text{ with } d_{2} (P_{\text{max}} - P_{\text{min}}), \text{ } d_{3} \text{ with } (S_{x} - S_{\text{max}}), \text{ } d_{4} \text{ with } (S_{\text{min}} - S_{\text{max}}), \text{ the equality becomes:} \]

\[\frac{P_{x} - P_{\text{min}}}{P_{\text{max}} - P_{\text{min}}} \times \frac{S_{\text{min}} - S_{\text{max}}}{S_{\text{min}} - S_{\text{max}}} \Rightarrow S_{i} = S_{\text{max}} + \]

\[\frac{(P_{x} - P_{\text{min}}) \times (S_{\text{min}} - S_{\text{max}})}{P_{\text{max}} - P_{\text{min}}} \]

\[\text{Example - it has the following data:} \]
\[P_{x} = 460,328; \ P_{\text{min}} = 156,202; \ P_{\text{max}} = 824,178; \ S_{x} = ? \text{ lei; } S_{\text{min}} = 1,000 \text{ lei; } S_{\text{max}} = 5,000 \text{ lei.} \]

\[\text{Determine the salary associated with the post } x, \text{ substituting in the formula:} \]
\[S_{x} = S_{\text{max}} + \frac{(P_{x} - P_{\text{min}}) \times (S_{\text{min}} - S_{\text{max}})}{(P_{\text{max}} - P_{\text{min}})} = 5,000 + \frac{(460,328 - 156,202) \times (1,000 - 5,000)}{(824,178 - 156,202)} = \]
\[= \frac{304,126 \times (-4,000)}{667,976} = 5,000 - 1,821.18 = 3,178.82 \]

2) A job evaluation methodology that uses information from salary surveys can be used especially if evaluators from different field scan not reach a consensus.
In this case we recommend performing the following steps:

a) Purchase of a market (labor market);

b) Establishing salary data to be used.
It will consider a number of limitations:

First, wage surveys are conducted on a sample of companies that participate voluntarily, and therefore the sample is not representative of the entire population. Most times companies are strong companies which assign significantly higher wages than other firms, at least on certain items (specialists and managerial staff)

For certain categories of information are insufficient jobs. The problem is even larger with the necessary data as a company to achieve payroll must belong to
Management & Marketing

both areas of responsibility and the area in which they operate (e.g. for a company working in pharmaceutical Science, relevant information is in the Pharma - Moldavia). Given that it uses a combination of ranking system proposed and the market price, the problem caused by lack of wage data for certain jobs disappear because the information that interests us refer to wages in general, related field of which the position (the e.g. Reward of financial or human resources in the Pharma market Moldova). There may be situations where the level area in a given area there are insufficient data, but we have nationally. In this case the coefficients can be determined to calculate the approximate salary levels sought:

Coefficient which adjusts the differences between geographical areas:

\[C_z = \frac{M_z}{M_1} \]

where:
- \(C_z \) – zonal coefficient;
- \(M_z \) – geographical area average (e.g. Moldova);
- \(M_1 \) – average wage in the country.

Coefficient which adjusts the differences between the operating company and the national average:

\[C_d = \frac{M_d}{M_1} \]

where:
- \(C_d \) – quotient field of activity;
- \(M_d \) – average wage across the country, related field of activity (e.g. Pharma);
- \(M_1 \) – average wage in the country.

Returning to the problem of sampling, we believe that this can be partially solved. To this end you can compare the national average in the study sample analyzed by the environment provided by the National Institute of Statistics. If the differences are significant, management may choose to establish a correction factor. Be but to the black labor and related earnings, the impact of public sector salaries on average, the labor market situation (which may be favorable to employees or employers, following the emergence of new companies aimed at developing the area and therefore attracting qualified staff especially in certain areas, or the default appearance and disappearance of joint market offerings consistent work of qualified staff).

3) Transformation, where the situation so requires, the existing data using the coefficients previously set.

4) Determining salary levels. The calculation method detailed below:

Method determination of financial rewards:

a) Identify the highest wages and lowest for 75 and 25 percentile domain analysis (financial accounting, human resources, production, etc.). Specific activity and geographical area for the company. The lack of information applies to the national data previously calculated coefficients (\(C_z \), \(C_d \) and if the coefficient sets of the personnel management based on market situation).
b) Concern’s activities: most valuable and least valuable percentile wages for 75 and 25.

c) Determine the value of each activity as follows:

It starts from the principle of the proportionality between the distance to intermediate activities are found compared with A and C (the most valuable and least value).

The condition of proportionality being:

\[\frac{d_1}{d_2} = \frac{d_3}{d_4} \] \hspace{1cm} (Figure 12).

Figure 12. Determining salary values for activities

\[A_i \] – activities considered to be the most valuable according to which the hierarchy of the domain;

\[B_i \] – some activity on an intermediate position

\[C_i \] – activities considered to be the least valuable as the hierarchy of the domain to which it belongs;

\[A_p \] – value assigned to the most valuable asset;

\[B_p \] – value that is intended to determine the activity as some intermediate value hierarchy;

\[C_p \] – value attributed to the least valuable tasks (according to hierarchy).

The value of intermediate activities is determined using the following formula:

\[B_p = \frac{A_p \times (C_i - B_i) - C_p \times (B_i - A_i)}{C_i - A_i}, \text{ formula shown as follows:} \]

\[\frac{d_1}{d_2} = \frac{d_3}{d_4}, \text{ they replace } d_1 \text{ with } B_i - A_i, d_2 \text{ with } C_i - B_i, d_3 \text{ with } A_p - B_p, \text{ with } B_p \]

\[d_4 - C_p, \text{ equality becomes:} \]
5. Advantages and disadvantages of the method of evaluation by task

The advantages and disadvantages of the proposed method achieved through a comparative analysis method based assessment scores. To achieve the proposed goal, we structured stages of analysis from that which is considered to be the best method of analysis of labor (based on score method) involved:

The first two stages consist of setting up a group of employees of the organization preparing the selected group members which includes job evaluation method, and what is expected of them, are present in both. Even if steps are common assessment tasks in the hierarchy is given the advantage of a shorter presentation, because it is not necessary to define the factors to be selected and offered no explanation of the meaning of questions and response options. Of course, it is necessary to explain how programs work with the hierarchy but the time required is much reduced.

Steps “depending on which selection factors will be the hierarchy”, “define the levels of each factor” and “determine the share that each of the factors will be the final result”, are considered by Chang and Kleiner, (2002), as the main elements of difficulty. The proposed method requires the definition of levels of each factor, moreover, it provides a simplified variant implies a hierarchy of activities and therefore jobs, without using assessment factors. This reduces the effort required and at the same time avoid any error that could occur during these stages by removing them yourself. Note on this occasion that the risk of not succeed, a clear difference in
A new methodology for job evaluation – assessment by tasks

levels for each factor used in evaluation and risk assessors do not really understand the meaning assigned to each level is significant no matter how good it would be defined.

The existence of scale can reduce the disadvantage of the method based on scores from the proposed method, but their use is counterbalanced by the risk that they do not reflect the company's specific job. Grids "ordered" requires time and resources to be made, but much better conforms to the needs of the organization, however the difficulty induced by the need for all positions can be evaluated by each factor is intended to be used and levels to differentiate clearly between them, and take the form of scales of assessment (Armstrong, 2002) requires an initial stage of verification of the grid. The proposed method, not using scales of assessment, has the advantage of not requiring a preliminary stage of verification.

It raises the issue of quality made by the method of ranking the hierarchy of tasks, the evaluation scale are eliminated. To support our view that in fact eliminate the assessment scale provides better results, we recall the specifications of Armstrong (2003), which proposes providing examples of factors whose levels can not be expressed numerically. Examples are not merely activities designed to induce a landmark assessor, following posts are treated different levels, depending on their correspondence with a number of tasks. From experience, we believe that the number of levels it is best to be as large, to succeed a better differentiation between the posts.

The trend in the distribution channel is one Gaussian levels, which determine when the use of stairs with fewer levels, say 3, that approximately 66% of jobs to be located on one level, generally level 2, thus unable to make a proper distinction between the posts. Even when using a larger number such as 7 levels, and are ranked 700 posts suppose, is hard to believe that a number of positions 200-300, which come to lie on the same level, are identical value. In such conditions removal evaluation grid proposed method is an advantage because it allows an infinite number of levels. In the numerical evaluation factors, the method of hierarchy of tasks can be easily adapted positioning activities are conducted according to specific numerical results for each task of the evaluation criteria used.

In the weightings assigned to each factor in the final result, Armstrong (2003), supports the need to avoid exaggeration, because otherwise the outcome could be affected. To solve the problem that the literature does not answer specifically, the proposed method uses a frame that respects the limits - none of the factors that weight does not exceed 1.5 times the average share, nor have more weight than 50% x average weight. Specifically, when using 10 factors with an average of 10%, the range would be [5%, 15%]. If the use made of just three factors, with an average of 33.33%, the range would be [16.66%, 50%]. It can be seen that the range is wide enough, allowing the impact of the most important factor to be about three times a factor considered less important, but at the same time avoid granting too much weight, or too small.

The stage of "establishing how scoring for each level of each factor" is eliminated by the method proposed giving it an advantage during both the win but especially by not imposing some predetermined range of activities evaluated, as
happens in If the valuation method based on scores for the stations analyzed. Consider to be more beneficial results, non-use of standard scores, because, for example providing 5, 11, 18, 25 points for each of the four levels as found in the job evaluation model applicable to the National Health System England (Nica, 2010) for emotional effort criterion, or any other similar system of evaluation, generates breaks continuity. In fact more stations may all be factors for a continuous period.

For example, depending on the emotional effort, 100 positions could be positioned in a hierarchical order on so many levels, with varying distances between them, revealing more accurate, although still subjective reality.

The last stage of hierarchy of positions and „determining the final score and ranking” gives no advantages to any of the methods.

Other advantages and disadvantages of the proposed method (assessment tasks) can be raised and by creating an overview of the steps outside the hierarchy.

An advantage of the method of assessment tasks is given the freedom given to the evaluators consider when deciding the hierarchical position of activities throughout their influence on the employee. Previous indication considers to be an advantage over the method of assessment scores based on criticism because one of the consideration consisted of jobs as encapsulated entities with clear boundaries (Sanchez, 1994) when in reality many jobs are Unique, here influence the employees.

Besides the above mentioned disadvantage for evaluation based on scores, can be referred to disregard employees' skills and competences, and that the method can be applied to companies that required a lot of flexibility, and any job that requires volumes of knowledge and / or engaged in high technology (Lowler, 1986 cited by Armstrong, 2003). Method of assessment tasks, manages instead to combine ideas with specific positions "fingerprint" unique to employees.

The method proposed by the ability to identify concrete solutions for employees whose salaries are below those calculated granted, get another advantage compared to assess the scores. The new method can provide new powers to obtain more valuable in a much shorter time in order to increase the value of positions held.

An evaluation method based on scores, a change in activities would have required a reanalysis of the entire post and there would be no certainty of a salary improvement calculated. The difficulty of making simulations would have been a powerful impediment to providing concrete solutions for salary increase calculated. This advantage is significant if we consider to Bruckner and Wiesenfeld (1996) made details who notes that when the evaluation results obtained jobs are unfavorable, procedural fairness plays a low „buffering” and therefore specific mitigation solutions are needed to be identified dissatisfaction.

Other advantages of the procedure of the task lies in the flexibility available. Each activity is evaluated, any change in activity between stations can be achieved by a few clicks, thus avoiding the need to reassess the two jobs simultaneously (one in which it takes work and to distribute that load) as as scores based method would be
A new methodology for job evaluation – assessment by tasks

requested. The disappearance of an activity, means simply delete it, while the emergence of a new task requires a marginal evaluation limited to the task in question. The appearance or disappearance of tasks would be assumed by the classical one later reconsidered and a review of the job. This provides a substantial increase in system reliability and a maintenance data in real time. As mentioned disadvantages of the proposed method needed to perform the evaluation during the initial high, and there is a degree of bias specific to any field that is based on human perception.

Conclusions

The proposed methodology is innovative, involving a radical change both practical and theoretical aspects of the job evaluation mode. In principle, the change is to change the center of gravity of the whole job evaluation in every business. Basically, the station is no longer seen as a whole but as a sum of task values.

Even if the ultimate goal remains fundamental valuation, methodological changes require changing the definition of classic. In our opinion, the valuation in the context of this work can be defined as - determining the relative values of the tasks performed in the organization, depending on which channels are evaluated.

To ensure staff can develop their careers and to deal with situations in which certain items are better or worse paid than results, a series of changes regarding the tasks performed in different positions can be made.

The system shows a great capacity to facilitate the transition activities in a post to another without the need for a reanalysis. Finally, we can say that the method of assessment tasks provides a qualitative growth and a reduction in maintenance costs compared with the method based on job evaluation scores, a method currently considered to be the most used and most well known of all methods.

Acknowledgements

This work was supported by the European Social Fund in Romania, under the responsibility of the Managing Authority for the Sectoral Operational Programme for Human Resources Development 2007-2013 [grant POSDRU/88/1.5/S/47646].

References

Armstrong, M. (2003), Managementul resurselor umane, Codecs, Bucureşti
Aubrey, C.D. (2007), Managementul performanţei, Polirom, Bucureşti

Available at: http://find.galegroup.com/gtx/informark.do?&contentSet=IAIC-Documents&type=retrieve&tabID=T002&prodId=SPJ.SP00&docId=A84902534&source=gale&srcprod=SP00&userGroupName=uaic&version=1.0 [Accessed 12 Apr. 2010]

*** GFK Romania, Top 100 Employers in Romania